Throughput Maximization for Laser-Powered UAV Wireless Communication Systems
نویسندگان
چکیده
Laser power has become a viable solution to provide convenient and sustainable energy supply to unmanned aerial vehicles (UAVs). In this paper, we study a laser-powered UAV wireless communication system, where a laser transmitter sends laser beams to charge a fixed-wing UAV in flight, and the UAV uses the harvested laser energy to communicate with a ground station. To maintain the UAV’s sustainable operation, its total energy consumption cannot exceed that harvested from the laser transmitter. Under such a laser energy harvesting constraint, we maximize the downlink communication throughput from the UAV to the ground station over a finite time duration, by jointly optimizing the UAV’s trajectory and its transmit power allocation. However, due to the complicated UAV energy consumption model, this problem is non-convex and difficult to be solved. To tackle the problem, we first consider a special case with a double-circular UAV trajectory which balances the tradeoff between maximizing the performance of laser energy harvesting versus wireless communication at the UAV. Next, based on the obtained double-circular trajectory, we propose an efficient solution to the general problem, by applying the techniques of alternating optimization and sequential convex programming (SCP). Finally, numerical results are provided to validate the communication throughput performance of the proposed design.
منابع مشابه
Throughput Maximization for Multi-Slot Data Transmission via Two-Hop DF SWIPT-Based UAV System
In this paper, an unmanned aerial vehicle (UAV) assisted cooperative communication system is studied, wherein a source transmits information to the destination through an energy harvesting decode-and-forward UAV. It is assumed that the UAV can freely move in between the source-destination pair to set up line of sight communications with the both nodes. Since the battery of the UAV may be limite...
متن کاملMinimum Throughput Maximization in UAV-Aided Wireless Powered Communication Networks
This paper investigates unmanned aerial vehicle (UAV)-aided wireless powered communication network (WPCN) systems where a mobile access point (AP) at the UAV serves multiple energyconstrained ground terminals (GTs). Specifically, the UAVs first charge the GTs by transmitting the wireless energy transfer (WET) signals in the downlink. Then, by utilizing the harvested wireless energy from the UAV...
متن کاملThroughput Maximization for UAV-Enabled Wireless Powered Communication Networks
This paper studies an unmanned aerial vehicle (UAV)-enabled wireless powered communication network (WPCN), in which a UAV is dispatched as a mobile access point (AP) to serve a set of ground users periodically. The UAV employs the radio frequency (RF) wireless power transfer (WPT) to charge the users in the downlink, and the users use the harvested RF energy to send independent information to t...
متن کاملResource Allocation for Solar Powered UAV Communication Systems
In this paper, we investigate the resource allocation design for multicarrier (MC) systems employing a solar powered unmanned aerial vehicle (UAV) for providing communication services to multiple downlink users. We study the joint design of the three-dimensional positioning of the UAV and the power and subcarrier allocation for maximization of the system sum throughput. The algorithm design is ...
متن کاملUAV-assisted Cooperative Communications with Wireless Information and Power Transfer
In this paper, we focus on a typical cooperative communication system with one pair of source and destination, where a unmanned aerial vehicle (UAV) flying from a start location to an end location serves as a mobile relay. To efficiently utilize energy in ambient environment, the UAV’s transmission capability is powered exclusively by radio signal transmitted from the source via the power-split...
متن کامل